
International Journal of Thermophysics, Vol. 16, No. 5, 1995 

Structure and Dynamics of Water-in-Oil 
Microemulsions Near the Critical and 
Percolation Points 1 

C. Y. Ku, 2 S. H.  Chen, 2'3 J. Rouch, 4 and P. Tartaglia 5 

The three-component ionic microemulsion system consisting of AOT/water/ 
decane shows an interesting phase behavior in the vicinity of room temperature. 
The phase diagram in the temperature-volume fraction (of the dispersed phase) 
plane exhibits a lower consolute critical point at about 40~ and 8 % volume 
fraction. A percolation line, starting from the vicinity of the critical point, cuts 
across the plane, extending to the high-volume fraction side at progressively 
lower temperatures. This phase behavior can be understood in terms of a system 
of polydispersed spherical water droplets, each coated by a monolayer of AOT, 
dispersed in a continuum of oil. These droplets interact with each other via a 
hard-core plus a short-range attractive interaction, the strength of which 
increases with temperature. We show that Baxter's sticky-sphere model can 
account quantitatively for the phase behavior, including the percolation line, 
provided that the stickiness parameter is a suitable function of temperature. We 
use the structure factors measured by small-angle neutron scattering below the 
critical temperature to determine this functional dependence. We also investigate 
the dynamics of droplets, below and approaching the critical and percolation 
points, by dynamic light scattering. Both the Q dependence of the first cumulant 
and the time evolution of the droplet density correlation function can be quan- 
titatively calculated by assuming the existence of polydispersed fractal clusters 
formed by the microemulsion droplets due to attraction. 
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1. I N T R O D U C T I O N  

The three-component ionic microemulsion system made of anionic surfac- 
tant, sodium di-2-ethylhexylsulfosuccinate (AOT), water, and decane is 
rather unusual in terms of its phase behavior. At a constant temperature, 
a typical symmetric ternary microemulsion system, having equal volume 
fractions of water and oil, shows the well-known 2-3-1 phase progression, 
as the surfactant concentration is increased from 0 to more than 8%. 
When the surfactant concentration is very low, the molecules are dispersed 
in water and oil just as monomers. The system is naturally phase-separated 
into two phases, with an oil-rich phase on the top and a water-rich phase 
in the bottom, because of high interfacial tension between water and oil. 
There is no organized structure in the two phases. At a temperature at 
which the surfactant has balanced affinities toward water and oil, a three- 
phase coexistence, with a middle-phase microemulsion in coexistence with 
an oil-rich phase on the top and a water-rich phase in the bottom, is to be 
expected at relatively higher surfactant concentrations simply because of a 
finite solubiIization power of the surfactant for water and oil. The middle- 
phase microemulsion is an interesting liquid because there is an organized 
microstructure in it. The microemulsion shows ultralow interracial tensions 
between itself and the water and oil-rich phases. The microstructure of the 
middle-phase microemulsion is often described as being "biscontinuous" in 
both water and oil. With further increase in the surfactant concentration, 
a "minimum" concentration will be reached whereby all the excess water 
and oil are solubilized into a single-phase microemulsion. This minimum 
concentration is usually between 5 and 8 % for a good microemulsion 
system. The value of the minimum concentration is a measure of amphi- 
philicity of the surfactant molecules at that temperature, being lower for 
higher amphiphilicity. In the vicinity of this minimum surfactant concentra- 
tion, the microstructure of the one-phase microemulsion is also disordered 
bicontinuous [ 1 ]. As the surfactant concentration further increases, the 
one-phase microemulsion transforms into a lamellar structure, which may 
be called ordered bicontinuous, and then to some other three-dimensional 
ordered structures. This disorder-to-order transition occurs usually around 
15 % of the surfactant concentration. 

The AOT/water/decane system, on the other hand, does not follow 
this usual pattern of phase behavior. Around room temperature the surfac- 
tant film, consisting of AOT molecules, possesses a spontaneous curvature 
toward water due to hydrophilicity-lipophylicity imbalance of AOT 
molecules in this temperature range. Thus one finds in the ternary phase 
diagram a large one-phase region, called the L 2 phase, extending from the 
decane corner into the middle of the phase triangle. In the L2 phase, even 
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with equal volume fractions of water and oil, the microemulsion, instead of 
being bicontinuous, consists of water droplets, coated by a monolayer of 
AOT, dispersed in decane. With this microstructure, the microemulsion is 
nearly an insulator because the water droplets are separated from each 
other. Our previous SANS experiments verified that the average radius 
<R> of the water droplets is determined essentially by the molar ratio of 
water to AOT, called W, in the system. An approximate empirical relation- 
ship between the radius (A) and W is <R> =(3/2) W. Thus, for W--40, 
the average water droplet radius is about 60 A [2]. This water-in-oil 
droplet structure is maintained even if the volume fractions of water and oil 
are equal [ 3 ], provided the temperature is below 25~ This case is in sharp 
contrast to the usual situation that, for equal water and oil volume fractions, 
the microstructure of one-phase microemulsions was generally found to be 
bicontinuous [4, 5]. Even for the AOT/water/decane system, when a small 
amount of salt (NaCI) is added, the common 2-3-1 phase progression is 
obtained at around the hydrophile-lipophile balance temperature of 40~ 
[ 1 ] and a SANS experiment in the one-phase channel at this temperature 
conclusively showed that the microstructure is bicontinuous [6]. 

This persistent droplet structure in the ternary AOT/water/decane 
system can, however, be used to realize an interesting coexistence of a 
critical phenomenon at low volume fraction and high temperature and a 
percolation phenomenon at lower temperatures but at all volume fractions. 
In fact, this is a rare situation in which one has, in a real system, the 
realization of both the critical and the percolation points at the same 
volume fraction. 

Figure 1 shows an experimental (open and filled circles) and theore- 
tical (lines) T-r phase diagram of AOT/H20/decane system when the 
water-to-AOT molar ratio W=40.8. Substitution of H20 by D_,O will 
merely shift all the phase boundaries up by about 2 ~ ~ denotes the volume 
fraction of the dispersed phase, in this case AOT plus water. In the 
diagram, one sees a one-phase (L,_) region below 40~ In the interval of 
r between 0 and 0.4, there is a cloud point curve separating the one-phase 
droplet microemulsions from the two-phase droplet microemulsions. The 
previous SANS experiment established that the average droplet sizes and 
their size distributions are, within the experimental error, identical in the 
one-phase and two-phase regions [2]. The critical volume fraction is 
approximately 0.1 and the critical temperature is 40~ [7] in H20. Above 
the volume fraction of 0.4 there is a phase boundary between the L2 and 
a lamellar phase where the microstructure is ordered and bicontinuous in 
water and decane (not shown in Fig. 1). 

The novelty of this phase diagram is, however, the existence of a 
percolation line, extending from the left of the critical point all the way to 
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Fig. I. Projection of the phase prism of the AOT/H20/decane system, at W=40.8 and 
ambient pressure, on the temperature-volume fraction plane. Open circles indicate the phase 
boundary, and filled circles the percolation locus [8]. The corresponding theoretical 
coexistence and spinodal curves were calculated based on Baxter's model after the transfor- 
mation of Eq. (2), with ~ = 11 and y = 0.94 (see text). The percolation locus was fitted with 
Baxter's model by means of the method described in the legend to Fig. 4. 

higher volume fractions, gradually decreasing in temperature to about  
23~ at ~b = 0.7. Below the percolation line the microemulsion is noncon-  
ducting, but above the percolation line it becomes conducting. In crossing 
the line, the conductivity increases by over five orders of  magni tude  [8 ] .  
The asymptot ic  behavior  of  conductivity near the threshold, at a given q~, 
can be expressed as power laws in [ T - Z p l .  The divergent indices are 
s ' = - 1 . 2 + 0 . 1  coming up from below Tp, and t = l . 9 + 0 . 1  going down 
from above Tp. The exponents are the same when T is fixed but ~ is varied 
[ 8 ]. The exponent  s' ,  determined from conductivities below the threshold, 
agrees with the value of  the index proposed in the so-called dynamic (or 
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stirred) percolation theory [9, 10], which is distinct from the standard 
static percolation exponent s = -0.73 [ 11 ]. On the other hand, the expo- 
nent t deduced from data above the threshold agrees with the static or 
geometric percolation theory [ 11 ]. In the theory of dynamic percolation, 
the conduction of electricity is conjectured to be mediated by charge 
carriers (presumably the sodium counterions from the AOT molecules) 
which migrate rapidly among microemulsion droplets forming transient 
fractal clusters, due to a short-range attractive interaction between the 
droplets. The percolation threshold is defined theoretically to be a point  
where the average cluster size becomes infinite, namely, when at least one 
cluster spans the entire sample. Note that, for this definition, a finite 
conduction can occur already below the threshold because even there an 
infinite cluster can exist. 

We have thus experimental evidence that the percolation in AOT/ 
water/decane system in the L2 phase is associated with a clustering 
phenomenon. The phase diagram that we depict in Fig. 1 should therefore 
be obtainable from the standard liquid theory with an appropriate defini- 
tion of the percolation. We outline one such theory in the next section. 

2. BAXTER'S STICKY-SPHERE MODEL AND THE ASSOCIATED 
PHASE D I A G R A M  

A reasonable model for a microemulsion in L2 phase is a collection of 
spherical colloidal particles of average radius ( R )  interacting among one 
another via a short-range temperature-dependent attractive pair-potential. 
This pair-potential can, for example, be a square-well potential with a 
hard-core diameter of a - A ,  plus an attractive tail of depth - e  and 
width A. The liquid theory with a square-well potential in general cannot 
be solved in an analytical form except for a limiting case in which t tends 
to infinity and A to zero in such a way that the contribution to the second 
virial coefficient exists. This limiting potential is called Baxter's sticky- 
sphere potential. By defining a as the outer diameter and a the inner 
diameter of the attractive well, it is understood that the limit a ~ a is to be 
taken in the calculation. From our discussion above, it is obvious that 
a -  A is approximately 2< R >. There is a single dimensionless parameter 1/3 
in the potential function called the stickiness parameter. The sphere is 
stickier the smaller r is. In the limit r tends to infinity, the pair potential 
reduces to a hard sphere potential. By equating the respective second virial 
coefficients, one can map the square-well potential parameters into an 
equivalent sticky-sphere potential parameter in the following way: 1/r = 
12(A/a) exp(fle), where fl is 1/kBT. We assume here that a >> z/. It is seen 
from this equation that the stickiness increases as A/a or pe increase. For 
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an AOT in decane, the parameter A corresponds roughly to the length of 
the hydrocarbon tail, which can stretch out as the temperature increases. 

Baxter [ 12] showed that the Ornstein-Zernike equation for this sticky 
pair-potential can be solved analytically in the Percus-Yevick approxima- 
tion [ 13 ]. The PY approximation in this case amounts to a reasonable 
ansatz that the direct correlation function c ( r )=  0 outside the range of the 
potential a. Combining this ansatz with the exact boundary condition for 
hard spheres that the pair-correlation function g(r) = 0 inside the hard core 
a and has a form of delta function on the surface of the sphere, the direct 
correlation function inside the hard core can be found. Thus one can 
obtain an analytical form of the three-dimensional Fourier transform of 
the direct correlation function c(k) as a function of the volume fraction 
of the spheres i I and the stickiness parameter 1/r. Here t /=  pa3n/6, and p 
is the number density of the particles. In comparing the theory with 
experiments for the scattering intensities, we identify t /with ~b. 

First, the interparticle structure factor S(k) is calculated from the rela- 
tion: S(k)= 1/[ 1 - p c ( k ) ] .  From the limiting value S(k---, O)= pkB TZT we 
can get the isothermal compressibility ZT. By integrating ZT with respect to 
the number density, one obtains the compressibility equation of states. From 
the equation of state, one finds the existence of a gas-liquid phase transition 
with a critical point occurring at r/r and rr Again, by 
integrating the compressibility equation of state, Barboy [ 14] was able to 
obtain an analytical chemical potential p valid in both the one- and the two- 
phase regions. Having the chemical potential and pressure, one can then 
obtain the coexistence curve by solving for the coexisting gas and liquid den- 
sities at a given r, which is less than rc in the two-phase region. 

It is seen that the coexistence curve is highly skewed toward the low- 
volume fraction side, a feature which is often seen in micellar solutions and 
microemulsions. This is due to the interaction which is short range and 
strong and is in sharp contrast to the well-known Van der waal case, which 
is derived from an interaction that is long range and weak. 

One of the nicest feature of Baxter's model is, however, that one can 
also derive analytically the percolation loci in the {r, t/} plane. Coniglio 
et al. [15] introduced a pair-connectedness function P(r) in 1977 in con- 
nection with development of a continuum percolation theory. Given a 
particle at the origin, 4nr'-pP(r)dr is the number of particles in the 
spherical shell (r, r +  dr) which are connected to this central particle and 
belong to the same cluster. Coniglio et al. showed that P(r) also satisfied an 
Ornstein-Zernike-type equation with a modified direct correlation function 
c§ By invoking the short-range nature of the direct correlation func- 
tion, namely, c + ( r ) = 0 ,  for r >  a, and the sticky-sphere condition, P(r)= 
(1/12)2a~(r-a). Chiew and Glandt [16] were able to show that the 
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average cluster size S is given by S = 1/(1 - 2r/) 2. The onset of percolation 
can be defined as the point where S diverges. Thus the percolation locus in 
the {r, r/} plane is given by r/= 1/2, leading to the equation 

1 12(1 - r l )  z 

r -- 19r/2 -- 2q + 1 
(1) 

Figure 1 also shows a percolation line according to Eq. (1). 
To compare the theoretical phase diagram with the actual one, we 

have to specify the relationship between the stickiness parameter 1/r and 
the temperature. The simplest relationship with two parameters 0t and ~ is 

( rc 1 - ~  1 (2) 

We can try to fit the experimental coexistence curve using the sticky-sphere 
model supplemented by Eq. (2) and then predict the percolation loci with 
it. Figure 1 shows the results of choosing e = 11 and ? = 0.94. 

3. ANALYSIS OF SANS DATA BELOW T c 

The SANS intensity distribution from a system of polydispersed 
spherical droplets can be written as [ 17] 

I(Q)=(Ap)2C~w(~R3)(Z+6)(Z+5)(Z+4)(ff(Q))(S(Q)) ( Z +  1)3 (3) 

where Ap =p,,,-Ps is the difference of scattering length densities of D 2 0  
and protonated decane, ~bw the volume fraction of D20,  /~= ( R ) ,  the 
average radius of the water core, and Z the index related to the polydis- 
persity. The normalized, volume square-averaged particle structure factor is 
defined as 

( i f (Q))  = (R6[3j,(QR)/(QR)]2)/(R 6) (4) 

The form factor of a spherical particle of radius R is F(Q)= 3j~(QR)/(QR). 
The form factor-averaged interparticle structure factor is defined as 

(S(Q)) =~"(p,pj)'/2F,(QIFj(Q)So(Q) p,F~(Q) (5) 
i , j  

The size average is taken with respect to a Schultz distribution, which is 
known to be accurate in the case of the AOT/water/decane system [2]. 

840/16/5-7 
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In this case the degree ofpolydispersity is d R ~ ( R )  = (1 + Z)  -,/2. The partial 
structure factor, So.(Q), for a multicomponent sticky-sphere system has 
been given by Robertus et al. [ 18], for i, j =  1 to 9, using Baxter's method. 
The FORTRAN package for calculating the partial structure factors has 
been kindly supplied to us by J. G. H. Joosten. The volume square- 
averaged particle structure factor, for a Schultz distribution of sizes, had 
previously been given in an analytical form by Kotlarchyk and C h e n [  19]. 

Equation (3) is a theory containing three adjustable parameters ( R ) ,  
Z, and 3. These parameters are functions of temperature and volume 
fraction. Here we assume that particles of different sizes have the same 
degree of stickiness. 

Figure 2 shows results of the analyses of the temperature dependence of 
the scattering intensity distributions from the 8 % ('the critical volume frac- 
tion) sample. The fits are satisfactory; from them, we were able to extracted 
three parameters, ( R ) ,  3, and Z. As temperature increases from 30 to 35 and 
to 40~ the stickiness parameter progressively decreases toward the critical 
value, while the average size decreases and the width of the size distribution 
increases slightly. Z =  10, corresponding to a polydispersity index of 30%. 
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Fig. 2. SANS intensity distributions of the 8% sample as a function of temperature. It is 
notable that S(Q) increasingly peaks in the forward direction as the temperature approaches 
the critical point. The particle sizes and size distributions, however, stay the same. 
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As can be seen, the form fac tor -averaged  in terpar t ic le  s t ructure  factor 
shows a zero-angle  peak  due to cri t ical  scat ter ing and is devoid  of  the first 
diffraction peak  due to the low volume fractions. 

4. A N A L Y S I S  O F  T H E  P H A S E  D I A G R A M  

It is most  reassur ing to see tha t  the t empera tu re  var ia t ion  of  rc/z 
derived from SANS da ta  comes out  in the form as given in Eq. (2). This 
s i tuat ion is s imilar  to the case of  nonionic  micel lar  solut ion invest igated by 
Menon  et al. [20] .  These au thors  suggested a l inear  re la t ion between r c / r  
and  T/Tr Figure  3 plots  the rr  values ob ta ined  from SANS da t a  agains t  
(1 - T/Tr TM. Linear  re la t ions are  ob ta ined  by adjus t ing  the value of  T~. 
F o r  8 %  case, the Tc turns out  to be 42.7~ close to the ac tual  Tr in a 
D 2 0 - b a s e d  microemuls ion  system. The  slope of  the s t ra ight  line in Eq. (2) 
gives 0~ = 11.03. 
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Fig. 3. The stickiness parameter I/r extracted from SANS data is plotted as functions of 
(I - T/Tc) T M  to obtain the slope - ~  and T~. This value of a for 8 % volume fraction is used 
to calculate the theoretical coexistence curve shown in Fig. I. It is remarkable that the Tc 
obtained from the 8 % data agree with the experimental T~ measured for AOT microemulsion 
made with D20. 
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We can derive Eq. (2) heuristically in the following way: we study the 
low-Q behavior of the form factor-averaged structure factor S(Q) for a 
system of sticky hard spheres of an average diameter 100A and a 
polydispersity index of Z =  I0 at the critical volume fraction p1r 
The study shows that at sufficiently small Q, the Ornstein-Zernike func- 
tional form is obtained and we can thus extract the long-range correlation 
length ~ as a function of 1/z as we approach the critical point. If we plot 
correlation length against [ 1 - ( z c / r ) ]  on a double-logarithmic scale, we 
obtain a series of straight lines, implying the validity of a relation 

~ ~ ( 1 -  ~ ) - v ,  (6) 

where the exponent v' depends on the polydispersity index Z. When Z is 
very large, namely, when the system consists of monodisperse sticky- 
spheres, v'=0.5; but when Z =  10, corresponding to the system under 
study, v '=  0.532. On the other hand, it is known experimentally as well as 
theoretically that near the critical point of a fluid, the correlation length is 
a function of the temperature distance from the critical point according to 

with v = 0.5, as in a mean field theory, such as in Baxter's solution. Equa- 
tions (6) and (7) taken together lead to our previous ansatz, Eq. (2), in 
which ? = v/v' = 0.500/0.532 -- 0.94. 

Figure 1 shows a comparison of the experimental cloud point curve 
(open circles) and the theoretical coexistence curve (solid line) and 
spinodal line (dashed line) calculated by the polydisperse sticky-sphere 
model, with the stickiness parameter r depending on temperature according 
to a relation 

r,o.9 4 
r~=r l - -  II I---~-~/ (8) 

To account completely for the percolation locus from Eqs. (I) and (2), 
we have to introduce a temperature-dependent effective sticky-sphere 
diameter. This idea is a reasonable one because the definition of connec- 
tivity of two spheres should he dependent on the thermodynamic state of 
the liquid. In fact it is intuitively appealing to postulate that the higher the 
temperature, the easier it is for the counterions to migrate from one water 
core of a droplet to another in the neighborhood. Therefore the effective 
diameter of the microemulsion droplets, as far as electrical percolation is 
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Fig. 4. The temperature dependence of the apparent volume fraction qSHS of sticky spheres 
which are needed to fit the percolation line. We plot the ratio (qsHs/t/) I/3 versus TITs, which 
results in a straight line. This shows that the apparent diameter of sticky spheres which is 
percolating increases linearly as the temperature increases. 

concerned, is larger for higher temperatures. Figure 4 shows the result of 
force-fitting the experimental percolation locus (filled circles) with Eq. (1) 
(solid line). The ratio, (qsns/rl) I/3, which is a measure of the ratio of the 
effective diameter to the actual diameter, turns out to be a linear function 
of TIT  c. It is shown in Fig. 4 as a solid line. 

5. DYNAMICS OF T H E  D R O P L E T  NUMBER DENSITY 
F L U C T U A T I O N  NEAR THE CRITICAL P O I N T  

We turn next to the discussion of some aspects of the droplet dynamics 
near the critical point. The starting point of our theory is the assumption 
that the slow dynamics of the droplets is dominated by diffusive motions of 
the percolation clusters [21 ]. This assumption is expected to be good in the 
vicinity of the percolation threshold, where large, transient fractal clusters 
are formed. Formation of the transient fractal clusters is a necessary condition 
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for the dynamic percolation theory [9] to be valid. We have used it to 
explain the conductivity exponent below the percolation threshold in the 
introduction. In the AOT/water/decane system, as one can see from the 
phase diagram (Fig. 1 ), the critical point is only about 2 ~ above the per- 
colation point. One therefore expects that the cluster structure and cluster 
size distribution in the critical region are similar to the percolation point. 

For light scattering, the wavelength of visible light is much larger than 
the droplet sizes. Hence, for this Q range, the particle structure factor is 
nearly unity and we can ignore it. 

First, the interparticle structure factor Sk(Q) for a cluster containing 
k particles in given by [22] 

k DF(D) s i n [ ( D -  1) tan-I(QRE)] 
Sk(Q) -- 

( D - 1 )  QRk[1 + QZR~.]'~ 
+ 1 (9) 

where D is the fractal dimension of the clusters, R k = Rik l/n, the radius of 
gyration of the k-cluster, and RI the average radius of the droplet. The 
intermediate scattering function F(Q, t) can then be calculated as 

~ff-ffix kN(k) Sk(Q) exp(--DkQ2t) 
F(Q, t)= (10) 

Y.~.=, kN(k) Sk(Q) 

The discrete sum can be converted into an integral over k by introducing 
a cluster size distribution function of the form N(k )~k t -~exp ( - k /S )  
[23-1. In this expression r is the polydispersity exponent, S the average 
cluster size, Dk=Dik -lID the translational diffusion coefficient of the 
k-cluster, and D1 the Stokes-Einstein diffusion coefficient of the droplet. 
Numerical simulations for three-dimensional percolation clusters gave a 
fractal dimension D=2 .5  and the polydispersity exponent ~=2.2 [23]. 
The measured photon correlation function is then given by C2(Q, t ) =  
1 + IF(Q, t)['-. The first cumulant, or the average relaxation rate F(Q), is 
the logarithmic derivative of C(Q, t) evaluated at t = 0. 

5.1. Dynamic Slowing-Down of the Average Relaxation Rate 

The average relaxation rate F(Q) can be expressed in terms of two 
dimensionless variables, x = Q~ and x l = QR~, where the correlation length 
is defined as ~ = Rl S 1/D/[3] i/2. The complete analytical form of the F(Q) 
near the percolation threshold has been given in Ref. 21. We limit our 
discussion here to the particular case near the critical point. In this case the 
cluster structure factor Eq. (9) is approximated by its low-Q form Sk(Q)= 
k exp(--Q2R~/3). An analytical expression of F(Q) can be obtained by an 
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integration. It is more revealing to display a scaling function defined as 
F*(x, xl)=F(Q)/DIRIQ 3. It  is [24] 

3nF(3-r,x~)['(3-r-1/D,u)[+ 1 ]  ]/2 
]"*(x, x i ) = - ~ - / , ( 3  ~ _ ~ - ~ , x ~ - ~ F ( 3 _ L u )  I ~-i (11) 

where u = (xl/x) D [1 "[- X2] D/2, and F(a, b) is the incomplete Euler gamma 
function. It should be remarked that the presence of the second nonuni- 
versal variable x t in Eq. (11) is due to the finite size of the constituent 
particles. It is remarkable that in the limit of small particles, F*(x, xt)  
reduces to the Kawasaki  universal dynamic scaling function calculated by 
a mode coupling theory, which is known to account for light-scattering 
data from binary mixtures of molecular liquids very well. F*(x,  x~ = 0 )  
has simple asymptotic behavior: For  x,~ 1, F*(x)=a/x, and for x>> 1, 
F*(x) = b ,  where a and b are known constants. Figure 5 illustrates the 
crossover from small x to large x behavior as given above. Using light-scat- 
tering data taken near the-critical point of the AOT/water/decane system, 
we illustrate the agreement of measured first cumulants of photon correla- 
tion functions and prediction of Eq. (l 1) [24]. It is clear from the graph 
that the finite size effect of microemulsion droplets is large enough to be 
detectable in a light-scattering experiment. 

10 . . . .  ' ' ' ' 1  . . . .  ' ' ' '  / 
X l = ~  

F* x00 t 
1 i 
0.1 1 10 

]/X 

Fig. 5. The dynamic scaling function l'*(x,x 0 associated 
with the first cumulant of the photon correlation function 
plotted as a function of 1Ix for two values of the scaled 
droplet size x I . Open circles are experimental data from the 
AOT/water/decane system near the critical point. The upper 
solid line corresponds to Kawasaki's mode-mode coupling 
result. The lower solid line is the dynamic droplet-model result 
presented in the text. 
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An analogous dynamic slowing-down phenomenon near percolation 
points at higher volume fractions has been observed and explained by the 
theory [21, 25]. 

5.2. Stretched Exponential Decay of the Time Correlation Function at 
Long Times 

Again Eq. (10) in its integral form can be computed analytically [26]. 
We then obtain the time correlation function, C(u, v), in terms of the scaling 
variable u and a dimensionless time variable v = D 1Rl Q3t(1 + x -2) u2. It is 
sufficient for the purpose here to state that at sufficiently short times, we 
have an exponential decay with the average relaxation rate F(Q) given 
before, C(u, v ~ O ) = e x p [ - F ( Q ) t ] .  At long times such that Ft~> I, the 
time correlation function approaches an stretched exponential form, 
C(u, v >> 1 ) = exp[ - (_Pt)P], with .P given by 

1 ,~1/2 
f f  =f l ' /PD' /~ 3 (1 +~-~) (12) 

and the exponent fl = D/(D +1) is a universal number 0.713. 
Crossover from the short-time exponential decay to the long-time 

stretched exponential decay of the photon correlation function occurs at 
the dimensionless variable Ft = 1. 

Near the percolation points at high volume fractions, one has a similar 
crossover from exponential to stretched exponential behavior [21 ], except 
the crossover occurs at earlier times so the stretched exponential decays 
can be easily observed in experiments [ 17]. 

6. CONCLUSION 

We have given concrete evidence that both the structure and the 
dynamics observed in a three-component microemulsion system, AOT/ 
water/decane, near the critical and percolation points can be explained in 
terms of a model based on the formation of transient, polydisperse fractal 
clusters due to a short-range attraction between microemulsion droplets. 
This attractive interaction increases in a specific way as the temperature 
increases toward the percolation and critical points. We derive a quan- 
titative relation between the interaction strength and the temperature from 
analyses of SANS data in the one-phase region approaching the critical 
point. This relation serves to explain the overall feature of the phase 
diagram, including the cloud point curve and the percolation line. 
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The diffusive cluster dynamics  also accounts  for the Q dependence 
of the first cumulan t  of pho ton  correlat ion functions in the critical region. 
The dynamic  scaling function associated with the average relaxat ion 
rate deviates significantly from the well-known Kawasaki  funct ion at 
large Q due to the large sizes of the microemuls ion droplets [24] .  The 
long-t ime behavior  of the photon  correlat ion function is shown to be 
a stretched exponent ial  form with a universal  stretch exponent  of 0.713 

[21] .  
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